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VIL.—On the Theory of the Perturbations of the Planets. By James Ivory, 4.M.
F.R.S. Instit. Reg. Sc. Paris. Corresp. et Reg. Sc. Gottin. Corresp.

Read January 19, 1832.

THe perturbations of the planets is the subject of reiterated researches by all
the great geometers who have raised up Physical Astronomy to its present
elevation. They have been successful in determining the variations which the
elements of the orbit of a disturbed planet undergo; and in expressing these
variations analytically, in the manner best adapted for computation. But the
inquirer who turns his attention to this branch of study will find that it is
made to depend upon a theory in mechanics, which is one of considerable
analytical intricacy, known by the name of the Variation of the Arbitrary
Constants.  Considerations similar to those employed in this theory were
found necessary in Physical Astronomy from its origin; but the genius of
Lacrance imagined and completed the analytical processes of general appli-
cation. In a dynamical problem which is capable of an exact solution, such
as a planet revolving by the central attraction of the sun, the formulas con-
structed by LaGraNGE enable us to ascertain the alterations that will be in-
duced on the original motions of the body, if we suppose it urged by new
and very small forces, such as the irregular attractions of the other bodies of
the planetary system. General views of this nature are very valuable, and
contribute greatly to the advancement of science. But their application is
sometimes attended with inconvenience. In particular cases, the general
structure of the formulas may require a long train of calculation, in order
to extricate the values of the quantities sought. It may be necessary for at-
taining this end to pass through many differential equations, and to submit to
much subordinate calculation. The remedy for this inconvenience seems to
lie in separating the general principles from the analytical processes by which
they are carried into effect. In some important problems, a great advantage,
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196 MR. IVORY ON THE THEORY

both in brevity and clearness, will be obtained by adapting the investigation
to the particular circumstance of the case, and attending solely to the princi-
ples of the method in deducing the solution. It may therefore become a ques-
tion whether it be not possible to simplify physical astronomy by calling in
the aid only of the usual principles of dynamics, and by setting aside every
formula or equation not absolutely necessary for arriving at the final results.
The utility of such an attempt, if successful, can hardly be doubted. By ren-
dering more accessible a subject of great interest and importance, the study
of English mathematicians may be recalled to a theory which, although it
originated in England, has not received the attention it deserves, and which
it has met with in foreign countries.

The paper which I have the honour to submit to the Royal Society, contains
a complete determination of the variable elements of the elliptic orbit of a dis-
turbed planet, deduced from three differential equations that follow readily
from the mechanical conditions of the problem. In applying these equations,
the procedure is the same whether a planet is urged by the sole action of the
central force of the sun, or is besides disturbed by the attraction of other
bodies revolving about that luminary ; the only difference being that, in the
first case, the elements of the orbit are all constant, whereas in the other case
they are all variable. The success of the method here followed is derived from
a new differential equation between the time and the area described by the
planet in its momentary plane, which greatly shortens the investigation by
making it unnecessary to consider the projection of the orbit. But the solution
in this paper, although no reference is made to the analytical formulas of the
theory of the variation of the arbitrary constants, is no less an application of
that method, and an example of its utility and of the necessity of employing it
in very complicated problems.

1. If S represent the sun and P, P’ two planets circulating round that Iumi-
nary, it is proposed to investigate the effect of the attraction of P’ to disturb
the motion of P and to change the elements of its orbit. We here confine our
attention to one disturbing planet; for there is no difficulty in extending to
any number, the conclusions that shall be established in the case of one.

The positions of the planets P and P’ may be ascertained as usual by the
rectangular coordinates x, y, z and &, %/, 2'; «, y, 2,4 being contained ina
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plane passing through the origin of the coordinates placed in the sun’s centre ;
and z, &' being perpendicular to the same plane.

Further, let M, m, m' denote the respective masses of S, P, P'; » and 7' the
distance of P and P' from S, and ¢ the distance between the two planets ; then,

putting w = M + m, the direct attraction between S and P will be %; and

the resolved parts of this force, acting in the respective directions of «, y, 3, and
tending to diminish these lines, will be
per By EE
R
m!
The planet P’ attracts S with a force = —Zf,@, of which the resolved parts are,

ma wy w
7.!3 2 7,’3 2 1.[3 .

/
The same planet P’ attracts P with the force 'émg, of which the partial forces

are m@—z) wWEy —y) w(E—z)

¢ 7’ ¢ 7’ ¢
Were S and P attracted by P’ in like directions with equal intensity, the rela-
tive situation of the two bodies would not be changed, and the action of P’
might be neglected : but the attractions parallel to the coordinates being un-

equal, the differences of these attractions, viz.

m (¢ —x) wal wm(y—y) wy wmEF—z) w
"" g's - 73> gs 773 gs — e

are exerted in altering the place of P relatively to S. These last forces increase
the coordinates x, y, z; and, therefore, they must be subtracted from the
former forces which have opposite directions, in order to obtain the total
forces acting in the directions of the coordinates and affecting the motion of
P relatively to S, viz.

me (2 — 2) m' &
P ¢ + PYER
my m (Y —y) , my
P §3 + 232
mz  m(d—2) m 3

3 1.’3 i
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But, if d ¢ represent the element of the time supposed to flow uniformly, the

dy dy d
actual velocities with which the coordinates increase are, d‘:, dyt’ d: ; and the

. .. ddx ddy dd
increments of these velocities, — tf > g tgy > 2 ; , are the effects produced by all

the forces that urge the planet. Equating now the forces really in action to
the measure of the effects they produce, and observing that the two equivalent
quantities have been estimated in opposite directions, we obtain the following
equations for determining the place of P relatively to S at any proposed instant
of time,

ddz p.w___m’(x’——a:) m' !

d ts + -~ gs - 13

ddy m(y —y) m'y
w+F=“?“'W:

ddz w(J—2) m

wra + - "’—és_—“ — TE

If we now assume
R = X{ 1 xx'+yy’+zz'}
= V(@ =P + (Y —yP+(F =2 (@2t 22T

dR dR dR
it will be found that the partial differentials, » X Tao X Ty b X g are

respectively equal to the quantities on the right sides of the last equations,
that is, to the disturbing forces tending to increase the coordinates x, y, =
These equations may therefore be thus written,
ddx X dR
mm+ﬁ=m37
ddy Y dR
,/-dtg + 73' = '&-g, > . . - . . ° B » - . . - B (A)

ddz % dR

pd ™™ 57 dz

If it be asked, What notion must be affixed to the symbol x d#2?, it will be
recollected that is the attraction between S and P at the distance r; and if
we suppose that P describes a circle, of which unit is the radius, round S, the

centripetal force in the circle will be % or w; and the velocity with which P
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moves in the circle will be proportional to o/, . Thus the algebraic quantities
¢t/ and d¢/p represent the arcs of this circular orbit, which are described
in the times ¢ and d¢.

It is requisite in what follows to transform the coordinates x, y, 2 into other
variable quantities better adapted for use in astronomy. Let A and A’ denote
the longitudes of the planets P and P’ reckoned in the fixt plane of 2y, and
s and & the tangents of their latitudes, that is, of the angles which the radii
vectores r and ' make with the same plane: then,

rCcos A 2 7' cos N
xXx = — T
V142 V14 s
7 sin A y . r'sinA
y_ )‘/1_'_39.’ cy - 4/]. +s!2’
rs , s
z

= Vigse® T /iy

. .. dR dR dR
In the transformations alluded to, the quantities ——, Ty Iz must be ex-

pressed in the partial differentials of R relatively to the new variables », 2, s;
and it will conduce to clearness of method if these calculations be dispatched
here. We have the equation,

dR _dR dr  dR dxr  dR ds,

e =drdx T A% T T T @
d havi d the differentials 2, 22, 2 grom the formul
and having computed the differentials 7—, ==, == from the formulas

r= /224y + 22, tan.k:%, s=:/—x—g——+=y2,

the substitution of the results will make known the expression of ‘—id—% By the

aR . dR

like procedure the values of and —— will be found

dy
z_i_E__t_Z_B cos A dR sinA 1+ , fl__Ii' cosASy/ 1 + 2 I
de —dr* Y1+  da’ r — ds r ’
EZ_B._Q_B‘. sin A dR cosay/1+ 2 EZ___I} sinAs 414 s® . (B)
dy_dr'vl+32+7Z_A' r — ds r ’
dR_4R s iR TT
dz T dr " A1 + +ds' PR J
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The new partial differentials of R represent the disturbing forces reduced to
new directions. By combining the formulas (B), we get

R _dR  cosr | dR _dmr | AR 5

dr T dx " yT+¢ ' dy ' V14 dr T V14’

oy e . . dR dR d
and it will readily appear that the coeflicients of ——, {717/” }Tg are the re-

spective cosines of the angles which the directions of the forces make with r 5

AR, .
so that 71; is the sum of the three partial forces that urge the planet from the

sun. In like manner it may be proved that —— . is the disturbing

da
force perpendicular to the plane passing through the sun and the coordinate z,

. . . d 1 2, . .
that is, to the circle of latitude; and that 'E% . -—i;—i is the force acting in the

dR ~1 45§
r

same plane perpendicular to r, and tending to increase the latitude.
2. If the equations (A), after being multiplied by 2d«, 2dy, 2dx, be
added together, and then integrated, we shall get this well-known result,

de +dy? +dz* 2 | 1 |
I ko =2fdR

in which —;— is the arbitrary constant, and the symbol d'R is put for
dR dR dR
Z;dwﬁ—ggdy4—3;dz;

that is, for the differential of R, on the supposition that #, y, 2, the coordi-
nates of the disturbed planet, are alone variable. If we conceive that R is
transformed into a function of the other quantities », A, s, we shall therefore
have
dR dR dR
IR =22 e ¢
dR=——dr+g-di+ 5 ds.
Supposing that the radius vector r, at the end of the small interval of time

d ¢, becomes equal to » + dr, and that dv expresses the small angle contained
between r and r 4 dr, we shall have

dr2 4+ r2dv? = da? + dy? + d=2;

for each of these quantities is equal to the square of the small portion of its
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orbit which the planet describes in the time d¢. The last equation may there-
fore be thus written,

dr? 2 dv® 2 1 .
m-!—m——‘r‘ 7=2de. . . . . . . . . (2)

The double of the small area contained between the radii» and » + dr, is
equal to r>’dv; andas @, ¥, sand v +da, y + dy, = 4 d=z, are the coordi-
nates of the extremities of the radii, the projections of the area upon the planes
of vy, ¥z, y =, are respectively equal to

zdy—yda, xdz—zdr, ydz—=zdy:

wherefore, according to a well known property, we shall have,

rdv® _ (edy—ydax) | (rdz—=zxda) (ydz —zdy)®
pdt® T wdit? + wde + wdt® ’

and the differential of this equation, d¢ being constant, may be thus written,

rtdv® dzddx + dyddy + d=zdd
4. Tor =26+ + . ( yoey )
—2(@de+ydy+=zdz). (wdderdediey-‘-zddy)

Now, substitute the values of the second differentials taken from the equations
(A), and we shall obtain, first,

dedde +dyddy +dzddz dr d7
wdP =T di+ G dy"' dz g—mw=dR-7
and, secondly,
zdde +yddy +2ddx __dR 1 R 1
wd P =3z % v+ d_y v+ dz el PR

wherefore, since a? + 12+ 2=7r?and edx 4+ ydy 4+ zdzx =rdr, the fore-
going differential equation will become by substitution,

r*dv?
4.28% — 22 (aR =% Far),
or, which is equivalent
4
d. ’;l:f._wz d}\dl+~——~ds)

MDCCCXXXII. 2D
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By integrating,
r2dv="hdt/p, h

B=nt42fr(dR=-Glar),

v

(3)

dR dR
h? = h?+4 2fr2 7 Ar+ —%ds),J

‘2
the constant A, being equal to -~ 4/— when ¢z = 0.

Further, let the first of the equations (A) multiplied by v be subtracted from
the second multiplied by #; then
d.(vdy— _ydw) dR dR
wdt ~dy y —dzY:

and, by converting the quantities in this equation into functions of r, 4, s,

d- (T aive) _an.
dt v/ Tdar

and by multiplying both sides by 2. dx,

l+s2

r* dR

2
d. (1-]-52' dt:\/,/.) =2m.ﬁdl:

and, by integrating,

;‘Qd};:h'dl,\/@, -\|

T R )
7? dR T ’

h’2_—_h0'2+2‘/‘m.7xd7\,J

hy being a constant.

The equations that have been investigated, which are only three, the first
and second being one equation in two different forms, are sufficient for deter-
mining the place of a planet at any proposed instant of time, whether it revolves
solely by the central force of the sun, or is disturbed by the irregular attrac-
tions of the other bodies of the system. The second and third equations
ascertain the form and magnitude of the orbit in its proper plane, and the
place of the planet ; the fourth equation enables us to find the angle in which



OF THE PERTURBATIONS OF THE PLANETS. 203

the plane of the orbit is inclined to the immoveable plane of x y, and the posi-
tion of the line in which the two planes intersect one another.

3. We begin with the more simple case of the problem, when the planet is
urged solely by the central force of the sun. On this supposition, there being
no disturbing forces, we must make R =0 in the equations of the last §.
By the formulas (3) and (4), we have,

r2dv=hdt s,

72 o
m.dk:h’dl,\/‘w;

and %, /', are constant quantities. NOW—;/—I—’:_I—_—;; is the projection of » upon

2
the plane of 2y ; and the area 1’%55 .dx is the projection of the area r2dv

upon the same plane ; wherefore, if i denote the angle of inclination which the
plane containing the radii vectores » and r -4 dr, has to the plane of xy, we
shall have
7‘2
dn 5

1+ s°

cost=—"—
dv

which proves that a plane passing through the sun’s centre and any two places
of the planet infinitely near one another, has constantly the same inclination
to the immoveable plane of #y. And it further proves that the planet moves
in one invariable plane; for, unless this were the case, the areas described
round the sun in any consecutive small portions of time, could not constantly
have the same proportion to their projections upon the plane of x y.

The orbit in its proper plane will be determined by the equations (2) and
(3), viz.

dr  *dv® 2 1
wde T uar — 7T =0

r2dv=hdt\[p,

a and k being arbitrary quantities. By exterminating d¢./p from the first

equation,
2 1
++7=0;

2D 2

dr® 72
2, —_——
i ’r‘*d'v“+ r
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. ,
by multiplying all the terms by —g—, and adding 1 to both sides,
Boodr r\2 A2
e rawt(l—2) =1—%
and by introducing the new quantity ¢%,

2 —1 _ "~
ee=1 Z

dr® 7\ 2
(1—62);‘27654—(1—7) = ¢2.

This equation is solved by assuming

dr esinf
rdv 1+ ecosb’

1—-1=e>< cosf + e

a 1 + ecosb’

the arc 4 remaining indeterminate. For, if the assumed quantities be sub-
stituted, the equation will be verified, and the arc ¢ will be eliminated. In
order to determine 4, let the second of the formulas be differentiated, and equate

%? to the like value in the first formula ; then,
dv=d0o; and v — & = 4.
The nature of the orbit is therefore determined by these two equations,

dr _  esin(v—w)
rdv™ 14 ecos(v—w)

a(l —é&)

- 1+ecos(v-—w):

the first of which shows that the two conditions g—:—; =0, and sin (v — ») = 0,

must take place at the same time; so that = is the place of the planet when
its distance from the sun is a minimum =e (1 — ¢), or a maximum =a (1 +e):
and the second proves that the orbit of the planet is an ellipse having the sun
in one focus; a being the mean distance; e the eccentricity; and v — = the
true anomaly, that is, the angular distance from the perihelion or aphelion ;
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from the perihelion if e be positive, and from the aphelion if the same quan-
tity be negative.
It must however be observed that the preceding determination rests entirely

. . . 7 o P .
on the assumption that, in the equation e* =1 — —, the quantity — is posi-

tive and less than unit. Without entering upon any detail, which our present
purpose does not require, all the possible cases of the problem will be suc-
cinctly distinguished by writing the equation in this form,

h? ‘
l_{_ez(l—-e)Xd.

The quantity on the left side being essentially positive, the two factors on the
other side must both have the same sign. If they are positive, the orbit will
be an ellipse; if they are negative, and consequently e greater than unit, the
curve described by the body will be a hyperbola; and it will be a parabola,
when ¢ =1, and a and 1 — ¢ pass from being positive to be negative, at which
limit the equation will assume this form,

2

?'SOXN.

2
1+4e
The nature of the orbit being found, we have next to determine the relation
between the time and the angular motion of the planet. For this purpose we

have the equation, r2dv = hdt./p, from which, by substituting the values
of r and &, we deduce

In all the cases is the perihelion distance.

dt v _ (1—eFdv
a¥ _<l+ecos(v—w)>2

Let ‘_/ﬁ = n; then, by integrating,

ot
_ (1—e)¥do ,
nt-l—e—w_\/(.l + ecos (v —w—))2

the quantity under the sign of integration being taken so as to vanish when
v—= =0, and ¢ being a constant quantity. The mean motion of the planet
reckoned from a given epoch, is equal to ¢ 4 ¢; and the mean anomaly, to
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nt -4 ¢— =, the true anomaly being v —=. The equation may be put in this
form,

V1—eé.dy —eX V1l—e.sin(v—mw),

ntfe¢—w= [T ""
+ 1 +ecos(v—w) 14 ecos(v—w)

and, if we assume

. __ V1l —¢é.sin(v—a) cos(v—w) + ¢
Sinw =" + ecos(v —w) ? CoSw = j Fecos(v—w)°

we shall find,

V1—2¢e.dv
1+ecos(v—m)’

U =

so that we readily arrive at these results,
nt+¢—m=u— esinuy,

a(l —¢é) _
1+ecos(v—w)

V== u l1+e
tan —— = tan 3 X\/l—e'

r o= a(l — ecosu),

These last are the formulas that occur in the solution of KepLER's problem,
the arc » being the anomaly of the eccentric. Having found the expression of
the eccentric anomaly in terms of the mean anomaly from the first of the for-
mulas, we thence deduce the true anomaly v — », and the radius vector », for
any proposed instant of time. The analytical solution of these questions is
omitted ; the sole intention of treating here of the motion of a planet circu-
lating by the central force of the sun, being to elucidate the investigations that
are to follow respecting the orbit of a disturbed planet.

The purposes of astronomy require further that the motion of the planet in
its orbit be connected with the longitudes and latitudes estimated with regard
to the immovable plane of zy. The orbit being supposed to intersect the im-
movable plane, and the angle of inclination being represented by ¢, let N stand
for the longitude of the ascending node, and P for the place of the same node
in the plane of the orbit and reckoned from the same origin with the true
motion v: then v — P, or the distance of the planet from the node in the
plane of the orbit, is the hypothenuse of a right-angled spherical triangle, one



OF THE PERTURBATIONS OF THE PLANETS. 207

side of which is the arc A — N in the immovable plane, and the remaining side
is the latitude having s for its tangent : wherefore we have

tan (A — N) = tan (v — P) cos s,
s =tanzsin (A — N).
The first of these equations enables us to compute A when v is given, and con-
versely ; by means of the second, the latitude is found. The practical calcula-
tions are much facilitated by expressing the quantities sought in converging
serieses : but the discussion of these points is beside our present purpose.
4. We now proceed to investigate the effect of the disturbing force of the
planet P' in altering the orbit of P. For this purpose we have the equations
(3) and (4), viz.

r2dv=hdt.

e dv=rdt Ju;

of which the first is the expression of the small area described round the sun
by the planet in the time d ¢, and the other is the projection of that area upon
the immovable plane of xy. Wherefore, if ¢ denote the angle of inclination
which the plane passing through the sun and the radii vectores » and » + dr,
has to the plane of x y, we shall have

7.2
_l+sg dA__h’_
COSZ— 7 do =7:

and, as &' and % vary incessantly by the action of the disturbing forces, it

follows that the momentary plane in which the planet moves is continually

changing its inclination to the fixed plane. Let ¢ be the value of ¢ when =0
!

then cos 7 = %‘)’ ; and, by the formulas (3) and (4), we shall have,

e=ne+2 fiz (SR an 4 1R ay),

o dR da
h? = h2cos?i +2 [r?. an i T

s2da dR
W= pe—nr=hesinei 2/ (G 22 4+ L2
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and hence, in consequence of what has been shown,
. }L’2 . . }LHQ . 112
cos?i = 7 sin? = 7 tan2¢ = 7
Let the momentary plane of the planet’s orbit, that is, the plane passing
through r and » + dr, intersect the immovable plane of 2y, and put N for the
place of the ascending node: then s and s 4 ds will be the tangents of the
latitudes at the distances A — N, and A + dA—N from the node : and, ¢ being
the angle contained between the two planes, we shall have,
s = tan isin (A — N),

dA = tanicos (A—N).

By adding the squares of these equations,

ds e
§2 + a—}\g;:tanzz:h—,g;

by differentiating, making d A constant,

W — ]z'd]z’( L )

dds da?
! o
R Az + S) - ds :
and, by substituting the values of ' d %" and ¥ d I,
dds # fdR_ 1 dR ds
an TS= R a5 TTE e da c dx

Since ¢ is variable in the equations (5), it is obvious that N, or the place of
the node, must likewise vary. By combining each of the two equations with
the differential of the other, these results will be obtained,

O_-d tanz sin

(x N) — dlftanicos *=N)
d(i:+s— - tan os (A — N)+ tanzsm(x N);

from which we deduce,

di = cos?icos (A—N). {fli:+s}.dk,

dN:w. {%’l‘s}'d;\;

sin 2 d A*
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and, by substituting the value of 24s Ag + s,
and, observing that 2dr=(1+ ) KdtJp=(1~+ s?) hcosidt/m, we

finally get,
di=cosicos (A—N). {(1+ 2) ds ‘cliI: % dtl:/[ﬂ

dR d
dN_sm(A N) {(l-{- 2)_3}_ S} dt&/‘u.

sin z

(6)

J
These equations determine the motion of the node in longitude, and the varia.-
tion in the inclination of the orbit. They are rigorously exact, and may be
transformed in various ways, as it may suit the purpose of the inquirer.
We proceed now to investigate the motion of the planet round the sun.
For this purpose we have the equations (2) and (3), viz.
2 2 2

£%+%%_§+%=gﬁn{

r2dv="hdt/ .
And first, as the small arc dv contained between the two radii » and » + dr,
continually passes from one plane to another, it is requisite to inquire what
notion we must affix to the sum v. The momentary plane of the planet’s
motion, in shifting its place, turns upon a radius vector; and if we suppose a
circle concentric with the sun to be described in it, and to remain firmly at-
tached to it, the differentials dv will evidently accumulate upon the circum-
ference of the circle, and will form a continuous sum, in the same manner as
if the plane remained motionless in one position. The arc v is therefore the
angular motion of the planet round the sun in the moveable plane, and is

reckoned upon the circumference of the circle from an arbitrary origin.
In the first of the foregoing equations a is an arbitrary constant, and I shall

put,
11 ,
=T 2fd R

so that we shall have
dr® | r*dve® 2 1
pae T par 7t a =0
rdv="hdt\/p;
MDCCCXXXII. 2E
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which are different from the corresponding ‘equations in the last section in no
respect, except that here % and a are both variable, whereas in the other case
they were both constant. Treating these equations exactly as before, we first
get by exterminating d¢./p,

ar? v/ 2 1
kzr*dve_l- r’*—7+—a-.=0;

then, by multiplying all the terms by g and adding 1 to both sides,

h% 2 h2
?’rgd'v?_'_(l )=1-—5;
from which we deduce

}lg

62'_1—-’5',

(I—¢?) rzdvz‘i' (1 --—) = e2.

The last equation is solved by the same assumptions as before, viz.

dr esinf
rdv— 1 + ecos§’

cosf + e .
1+ ecosb?

] i — =

but it must be recollected that in these formulas, a and e are both variable.
By differentiating the expression of r, viz.

a(l—e) B
1+ecosd — 1+ ecosh

r =

we get,
dr esinf.d) 2dh cosl.de

r 1+ecos@+ % T 1+ecosh’

: . . . d ,
and by equating this expression to the value of 71 taken from the first formula,
and reducing, we obtain,

e(dv—dé)sin9+cos0.de=-2—%—l§(l -+ ecos d).

It appears therefore that v — 4, or =, is a variable quantity; and the formulas
that determine the elliptic orbit, and the variation of =, are as follows :
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dr _  esin(v—m)
rdv = 1+ ecos(v—w)

a(l —¢) . R
1+4+ecos(v—=) " 1+ecos(v—m)

r=

edwsin(v—w)+de.cos(v—-w)=%—z-ﬁ(l +ecos(v—zzr)). oo (D

It is obvious that this last formula is tantamount to the equating to zero of
the differential of r relatively to the variables, A, ¢, @, or a, ¢, = ; it may there-
fore be thus written, '

d d ar |
Cdat pdet mdm=0. . . . . . . . . . . (8

The equations that have been investigated, enable us to deduce from the
disturbing forces the variable elements of the ellipse that coincides momen-
tarily with the real path of the planet; a being the mean distance, ¢ the eccen-
tricity ; = the place of the perihelion, and 42 the semi-parameter. We have
next to find the relation between the time and the angular motion in the
variable orbit. This will be accomplished by means of the equation r2dv

= hdt\/p; from which we obtain, by substituting the values of  and 4,

dtvp _ __ (1—e)F.dv
a¥ (1 + ecos (v — w))g
The integral f d? ‘3/”’, supposed to commence with the time, is the mean

aF
motion of the planet: when there is no disturbing force, a being constant, the
mean motion is proportional to the time and equal to 2z X ¢; but the action of
the disturbing forces, by making a variable, alters the case, and requires the
introducing of a new symbol { to represent the mean motion. Thus we have

1—eF.dv
(1 + ecos (v — fw))z
The value of Z cannot be obtained directly by integration on account of the

variability of ¢ and =. Let f (v — =, ¢) express that function of the true ano-
maly which is equal to the mean anomaly in the undisturbed orbit; that is,

g:f;‘; xdt; di=

suppose,
2E2
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(A —e)7.dv

f(’l)—-%’,e) =f(1 +€COS(v—fw))27

the integral being taken on the conditions that it vanishes when v —z =0,
and that ¢ and = are constant. If now we make e and = variable, we shall

have,

df(v »m-,e)d +df(v »w-,e)d +d f('v-—w,e)d =d.flv—m,0).
But the partial differential relatively to v, is no other than the expression of
d{: wherefore, '

d€+§;l%f_’fﬁ)de+m—*f)dw—d J(w—m,e).

By introducing a new symbol this equation may be separated into the two
which follow,
dl+de—dw=d.f(v—m,e),

de— dw:d——-—-———-°f(7;: ik e)de-}- d————"f(z;w’ e)dw.

In the integral
4 e—w=f(v—m,e),

¢ -+ ¢ is the mean motion of the planet reckoned from a given epoch, ¢ however
representing a quantity that varies incessantly by the action of the disturbing
forces, the amount of the variation being determined by the second formula
in which the value of ¢ alone has not been previously ascertained. The mean
anomaly of the planet is { 4+ ¢ — = ; and the integral shows that there is the
same finite equation between the mean and the true anomalies in the disturbed
orbit as when there is no disturbing force. It follows therefore that, in both
the cases, the true anomaly, the true motion of the planet, and the radius
vector, are deducible from the mean anomaly by the same rules and by the
solution of KepLER’S problem.

In order to find the value of the new variable ¢, it is necessary to eliminate
the differential coefficients from its expression. Differentiating relatively to e
and =, we shall get,

d f(v — @, €) _ 2cos (v—w) + Se + € cos (v—w)
= “/1—62./. (1+ecos(v—w)> ~dv,
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df('u—m-,e) _ 2esin (v —w).dv
- 2) f<1+ecos(v—w))

and, by integrating,

d.flo—me)__ _sinv—m)¥V1—¢ sinv—a)/1—¢ _

de 1 + ecos (v — @) (1 +ecos(v—w))s—

(2 + ecos(v—»w))sm(v—w) V1i—g
<1+ecos(v—w)> ’

df(v——m-,e) (1 — &7
dw (1 +ecos(v-w))

These values being substituted in the foregoing formula, we shall find this re-
sult, after dividing all the terms by the coefficient of d=,

(1+ecos(v—w))2 (2+ecos(v—w)>sin(v—w)

G F (de—dw) = — = de— dw,
or, more concisely,
— 2 + ecos (v — sin (v — =)
%___A.{_l_____. (de—d@') ( e OS( 1—'522) de-—dza‘.. o . (9)

From the equation between the mean and the true anomalies we deduce,
v=_4¢c¢—D,

® representing a function of the mean anomaly { +¢—=: and as the differ-
entials of Z and v are independent of the differentials of ¢, e, and =, we shall

have,

dv dv dv
a—sde-l-a-zde-[—a;dw:& N ¢ ()]
Now
’ dv_, _d.o  dv_ _d.o
de = de ° de— ~ dw *

and, because, @ is a function of ¢ — =,
. D dv  dv
‘T =— o consequently, =~ + 7= =1.

The equation may therefore be thus written,
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D de—dw)+ 32 det da =0

But, v being a function ¢ + ¢, it follows that,

and thus it appears that the equation we are considering is identical with the
formula (9) : from which we learn that,

dv (2 + ecos (v — w)) sin (v — o)
de ™= 1—e ’

It remains now to say a word about the longitudes and latitudes of the
planet reckoned on the immoveable plane of xy. The variable quantities N
and ¢ denote the longitude of the ascending node, and the inclination of the
orbit, in respect to the fixed plane: let P represent the place of the same node
on the moveable plane of the planet, this arc being reckoned from the same
origin as the true motion v: then, because the momentary plane in which the
planet moves, in taking a new position, turns about a radius vector, it is ob-
vious that, if d N be the motion of the node in the fixed plane of xy, cosi X dN
will be its motion in the variable plane of the orbit. Wherefore we have,

dP=cosi X dN, and P = f'cosi.dN,

a constant being supposed to accompany the integral. This being observed,
it is obvious that the same equations as in the case of the undisturbed orbit,
will obtain between the quantities under consideration, viz.

tan (A —N) = cositan (v —P),
s = tanisin (A —N).

The foregoing investigations prove that the motion of a disturbed planet
may be accurately represented by a variable ellipse coinciding momentarily
with the real path of the planet. The variations, in the magnitude, the form,
and the position of the ellipse, have been expressed by equations that depend
upon the disturbing forces. A new inquiry presents itself: to exhibit the

differentials of the elements of the variable orbit in the forms best adapted
for use.
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5. The expressions of the coordinates x, y, z, in terms of the variables
r, A, s, are as follows:

7 COS A _ 7sin A o = rs
M1+ 2 Y= Vit T Vixs

r =

and, if we write A— N + N for A, we shall get,

p=r. {20 N_S-N sinN},

RS V1+s
sin (A — N) cos(A —N) .
y=r. WCOSN+7-(-ﬁ—~S—Q)-SlnN}.

But » — P in the plane of the planet’s motion is the hypothenuse of a right-
angled spherical triangle of which A — N is one side, s the tangent of the
other side, and 7 the angle opposite to this latter side ; and from these consi-
derations we get
cos (A — N)
V14§
5
V14§

=cos (v —P), E‘Eﬁ‘__:_%_l) = sin (v — P) cosi, and

=sin(v — P)sinz:

wherefore we have these values of the coordinates,
z=7r.{cos (v — P) cosN — sin (v — P) sin N cos ¢}
y=r.{sin (v — P) cos N cos i -} cos (v — P) sin N}
g =r.sin (v — P) sini.
The radius vector r is a function of v, a, e, =, viz.

a(l—e?) .
1+ ecos(v—m)"

r =

and thus the coordinates z, y, 2, are functions of » and the five elements a, e,
=, N, i; for P is no independent quantity, since it varies with N. In order to
abridge we may write X, Y, Z for the multipliers of r in the foregoing expres-
sions of , y, z ; so that

e2=rxX, y=rXY, gs=rXxXZ

Now, on account of the equation (8) we have
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d d d d d d
E-Eda—l-zgde-l—a—;—dw={éda+£de+£dw}xX=0;

and, in like manner,
g’%da+g—zde+—§£dw:0,
%da+%de+%§dw=0.
Further, we have,
g%dN+%di=r.{(%cosi+%) dN+.‘.Zd_Z}§d'i};

and, if the expression on the right side of this formula be computed, it will be
found equal to

{sin (v — P)di — cos (v — P)sinidN} X sin Nsini;

and, by substituting the values of sin (v — P) and cos (v — P), the same quan-

tity may be thus written, '

sin Nsin7 cosz
V1t

which expression is equal to zero in consequence of what was shown in § 4.

Wherefore we have,

{sin(A — N) d.tani — cos (A — N) tan i d N} X

dx da .~ 7
aNdN + g7 di=0;
and similarly,

dy dy . > e« o e s e s e 2 e e e s (ll)

dz ,n7 , 4% 5.

aN dN + a7 di=0. J
It follows from what has been said that the expressions of dx, dy, d z contain
dv only, and are independent of the differentials of the five elements, a, ¢, =,
N, 7, which destroy one another and disappear. And further, if in «, y, x we
substitute for v, its value in terms of the mean motion and the mean anomaly,

viz.
v=0+4¢:— P,
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the expressions of dx, dy, dz will contain d{ only: for dv contains d { only,
and is independent of the differentials of ¢, e, . Thus we have

_dx _dz _dy _dy _das _dxz
d.z’—zi-zdg—&‘t'dt, dy—-d—gdg-—dtdt, dz—dgdg_dtdt'

It is in these properties that we recognise the principle of the Pariation of
the arbitrary constants. The finite expressions of 2, y, z, being the same in the
immoveable ellipse described by the sole action of the centripetal force of the
sun, and in the variable ellipse which represents the motion of a disturbed

planet, they will verify the equations (A), supposing the arbitrary quantities

. . . e dr dy dz
constant, and neglecting the disturbing forces. The velocities d—? s (T'Z, 77 are

the same whether the arbitrary quantities remain constant or vary ; and thus,
for a moment of time d #, the motion in the invariable ellipse coincides with
that of the planet in its real path. But, in the next moment of time, the planet
will quit the periphery of the ellipse supposed to continue invariable ; because
the forces in that orbit are different from the forces which urge the planet. In
the immoveable ellipse the forces in the directions of the coordinates are equal

ddx ddy dd . el . .
to — tf > 7 t,ﬂy >3 tf , the arbitrary quantities being constant ; but, in the case of

the planet, the like forces are equal to the same differentials augmented by
the variation of the arbitrary quantities, the additions thus introduced being

N d RS
equal to the disturbing forces, —3%, ,w %, (»%—?. It is in this manner that an

elliptic orbit, by the variation of its elements, is capable of representing at
every moment of time both the velocity of a disturbed planet, and the forces
by which it is urged.

And generally, when a dynamical problem admits of an exact solution, the
arbitrary quantities may be made to vary so as not to alter the velocities

de dy dz - . o e .ps
75 d_ty » 775 and the additions which the variation of the same quantities makes

. ddx ddy dd . . .
to the expressions PIiL —d-t%, TalT: will represent new forces introduced in the

problem. By means of this artifice we may estimate the effect of any disturb-

ing forces, more especially of such as bear an inconsiderable proportion to the

principal forces, in altering the original motion of the body. This is the prin-
MDCCCXXXII. 2F
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ciple of the Pariation of the arbitrary constants, a method which has been much
discussed, and which is now probably exhausted. It originated in the first
researches on physical astronomy, and has been matured in passing through
the hands of EuLer, Lacrance, Larracge, and Porsson. The labours of these
great geometers have raised up a general analytical theory applicable to every
case, and requiring no more than the substitution of the particular forces under
consideration. Invaluable as are such extensive views, the application of for-
mulas constructed on considerations of so general a nature, may not always
be very ready or very direct, and may require much subordinate calculation.
In important problems it may be advantageous to separate the principles of the
method from the analytical processes with which they are conjoined, and to
deduce the solution directly from the principles themselves by attending
closely to the peculiar nature of the case. o
Distinguishing the two planets by their masses m and =/, the symbol R
stands for a function of z, y, 2, the coordinates of the disturbed planet m, and
of 2, ', &, those of the disturbing planet 7'. The expressions of these latter
coordinates will be obtained by marking all the quantities in the values of
x, Y, 3, with an accent, understanding that the accented quantities denote the
same things relatively to the orbit of =/, that the unaccented quantities repre-
sent in the orbit of m. The function R may be transformed in two ways,
according as we substitute, for the coordinates, one set of values or another. It
will be changed into a function of the four independent quantities r, v, N, i, and
of the like four accented quantities of the planet »/, by substituting the values
of the coordinates obtained in the beginning of this section: and in this case,
for greater precision, the partial differentials of R relatively to » and v will be

. . dR R
written with parentheses, thus, (W) and (%—5) When the values of «, y, =,

in terms of the mean motion Z and of the six elements, a, ¢, e, w, N, 7, and the
like values of the other coordinates are substituted, R will be a function of
the mean motions { and ', and of the respective elements of the two orbits.
In this latter transformation, the partial differentials of R will be written,
as usual, without parentheses. It may not be improper to set down here the
expressions of such of these partial differentials as we shall have occasion to
refer to,
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IR_(m) dr_(my
a—\dr) "da— \dr/) " a’

dR  [dR\ dr dR dv \

=) = 2+ G | ©
dR (dR dr dR\ dv

e=(7d7 : de+dv de)+( ‘de

dR /dR dr

da= (dr . du+dv dw)+( dw’

dv dv dv
in which expressions, it need hardly be observed, that —— 70 deo0 do refer to

this value of v,
v=_0+e—D

Proceeding now to reduce the differentials of the elements of the variable
orbit to the forms best adapted for use, we have this formula for the mean
distance a,

%’ = 711— -2 f d' R : consequently, %?a =2dR.

Now, when &, y, x are transformed into expressions of 2and the elements
of the orbit, it has been proved that d«, dy, dz contain d only, and are inde-
pendent of the differentials of the elements: wherefore, the value d' R will be
found by differentiating R, making ¢ the only variable, that is, we shall have,

, dR dR dR dR
d R=de+ -‘E-dy+ ;l—‘;dz =Hd§.
But substituting this value,

dR b

da=2a? -5 T d¢, I

(12)
a=a-+2 fa? ——-dg

The mean motion ¢ is defined by this equation, d { = ﬁ—tﬁ-". But, we have,
a7

dta/(/-

1 1 , dt v/ ‘ FS
2 =7 (1 +2afdR); and, a%”‘.(1+2ajd'R),

2F2
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Let n?2 = {%, n being the constant of the mean motion in the primitive ellipse,

when £ = 0: then

ndt—d§(1+2af da)

dz_ndt—-dﬁ{‘o‘afdgd§+ 2 (f Yde) &e.

Taking next the semi-parameter A%, we have, by equation (3),

- (13)

’ dR
hdh=r(dR— G ar):
but 'R ( ) dv 4 ( ) dr; wherefore,
dR —7F (dR
ran=(5) rav=wy1=2. (4;) a2
In order to find the value of (%), let the expressions of %g— andgl: in the

. . d
formulas (C), be added : then, since it has been shown that —Jg + % =1, we

get,
( )(dw+dv + dv)

. . dr
and, because r is a function of v—w, 7=+ 7~=0; wherefore,

d € + d @ (
Further, because ¢ always accompanies ¢, or which is the same thing, because
dR __ d R
R is a function of { + ¢, we have — 7=
consequently,
dR
d§ + dw (

By substituting this value,
hdh=afT=2. (G +52) a2, 1

r . (14)
h2=a(1—e'2)+2,fa2,\/1-e2 d§+d@-)dga
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the semi-parameter of the primitive ellipse being equal to « (1 —¢?), and its

eccentricity to ¢.
The eccentricity is determined by this formula,

o
a
by differentiating,
hdk , 2° k
ede——-—-é—+2.%§__ ]i.d__l_ (l—ez) dl:

and by substituting the value of & d %,
de=—aT—e. {Lo¥I=F G2 2hbas . . . ()

For the variation of the perihelion we have the formula (7), which may be
written in this manner,

2 hdh=cos (v—=) de + esin (v —w) da:
and by multiplying all the terms by e,

esin(v—m=).edw = %;hdk—cos (v—mwm)ede:
and because ede = — ’ﬂ + r2d’R,

esin(v—w) . edw = (—-rf-l-cos”a—w)hdh—h?cos w—w)dR

Furtber,d’R_kdh+(d )d _hih-l-:a dr (d—f;‘.ﬂdv:

and, by substituting this value,

esin (v— ) . edw = (35 2= _ T G2y 4y,

Zvcos (v—m2) ( ) r2dv.
2
Now—fg . Z—Z = e¢sin (v—=) ; and it will be found that the coefficient of A d 4 is

equal to,

(2+ecos(v—w)).esin2('o—w) 1 dw
a(l—e® a
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wherefore, by substituting and dividing all the terms by esin (v — »),

edo=1 .50 hdh-cos w—=m)(5y).r dv.

But hdh = (4%)r2dv, and,

1
—cos (v—mw) = dr dv)

d e + dv' de
wherefore,

edw={72(5 )+(de+2’: 7 (%)} 5

and, because 2 dv = a2 /T— e . d 7,

_ay1—¢ dR :
d@'——-————-—-. a—e-.dz. s o o s o s s s a o . o (]6)

e

The variation of ¢, the longitude of the epoch, must be deduced from the
equation (9), viz.

) T — 2 d
LV (ds—dm) = — de—da.
From this d e may be eliminated by means of the equation (7), viz.

2 hdh=cos (v—w)de + esin (v —m) dw;

and the result will be

a® V1 —¢.cos(v— w) (de—dw) =

72

2 D hdh - {cos(v—a)—esin(v-w)f—lg}da.

Now the coefficient of d = is equal to
(1 -5 pe cos (v—=) ; %-e;
wherefore, by multlplymg by 2, we get
a2, /1—e?.cos (v—=) (de—dw)_—2r hdh

—a{a(l—e?)cos(v—m)—2re}dw:
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substitute now the value of d= in equation (16), and that of hdh viz.
a2 /T=2 (43) ¢, then

cos (v—m) (de—dw) = ——27‘%—:- (%—5) dZ

a(l —é®)cosv — = dR
._{ -—27‘}78-dg.

e

But, as appears from the formulas (C),
dv (dR R dR
Te" (%- =, +acos (v—m) (75
wherefore, by substituting and dividing all the terms by cos (v — =),

a(l—¢) dR (dR
de—dw = - —d_—e-dg.—,—27‘a.(w)dl:

et ; . dR dR
and by substituting the value of d=, and observing that (37 =" %, we

obtain
ds=a\/1,—e2(—l————‘/l———5)%d§—2a2%.d§. ¢Vl

e
If the formulas (C) be multiplied, each by its own differential, and the re-
spective results be added, it will be found that the coefficients of (‘%{) and

((2—%) are each equal to zero, on account of the equations (8) and (10): so

that we have,

dR dR dR dR
%da-l—"‘féde-}—a—sde—[-a—d'm:O:

=

and this equation will serve to verify the values of da, de, d¢, dw, which
have been separately investigated.

It remains to examine whether the values of di and dN already found
(equation (6)), can be expressed similarly to the other elements. The three
quantities N, P, ¢, or rather the two N and ¢, since P varies with N, are inde-
pendent of » and v, and consequently of , a, ¢, ¢, =: wherefore, by differen-
tiating the expressions of @, y, = relatively to ¢, we shall get

d . . . . .
ﬁ: rsin (v —P) sin Nsini = g sin N,
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‘%: —rsin (v—P) cos Nsini =—zcos N,

dz __ . _rsin(a—N)

7; = "sin (v—P) cosi = T

\ dR dR dR d th

Let these expressions be multiplied respectively by ——, —— 3 de A then
added ; the result will be

dR _ dR rsin (A — N)

- Tiaa {d sin N — cosN}+ R Vaurr ik
and by substituting the values contained in the formulas (B),

dR = (14 s?) ——s1n A—N)— Rscos A—N):

ds

and, because s cos (A —N) = 75 sin A —N),

dR dR d

1B~ sin =N . {(1 o) ix O, a—i}

dR dR dR

If the equations (11) be multiplied respectively by —,
added, this result will be obtained,

Ty’ ds and then

dR ..  dR
-E'z'dz-l-mdN:O

By combining this equation and the value of %I} with the formulas (6), we get,

a 1 dR 3
IN= e g 7 4l |
i=—i=a i aN- 9%

The differentials of the several elements of the orbit of the disturbed planet
have now been made to depeund upon the function R and its differentials rela-
tively to the elements themselves and to the mean motion . Upon the cal-
culations which this transformation requires, which have long ago been car-
ried as far as human perseverance can well be supposed to go, we do not here
enter. The variations of the elements of a disturbed planet, in the most per-
fect form in which they have been exhibited in the latter part of this paper, are
the result of the repeated labours of LacraNce and Larracg, who, at different
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times and by different methods, at last succeeded in overcoming the diffi-
culties of this great problem.

In this paper the utmost rigour of investigation has been strictly preserved.
No admission or supposition has any where been made for the sake of simpli-
fying calculation or of obtaining a result more readily. The procedure that
has been followed likewise makes it easy to change the form of the differentials
of the elements of the orbit, as occasion may require. Thus it is obvious from

the formulas (C), and from other formulas, that the variations of all the ele-

. dR dR
ments may be expressed by means of the three functions = —= ‘;—?; or,

dR dR dR . .
by means of the three — Ty dx oD by any two of the differentials of R

relatively to a, ¢, ¢, =, and one of the two, relatively to 2 and N; which re-
mark is useful in the theory of the comets.

There is this advantage in expressing the differentials of the elements by
means of the function R, that inspection alone discovers the nature of the
terms that enter into every formula. But it is not enough to know the form
of the terms, we must likewise attend to their convergency. In the present
state of the heavens there is no difficulty in this respect, because the eccentri-
cities of the planetary orbits, and their inclinations to the ecliptic are found to
be small, and it is upon the smallness of these quantities that the convergency
of the series into which R is developed, mainly depends. In the present cir-
cumstances of the planetary system, the formulas afford the utmost possible
facility for computing the inequalities of the elliptic elements. After all, the
inquiry is difficult enough when it is carried beyond a first approximation ; for
in the second stage of the process every element that enters into a formula
being itself a collection of sines or cosines, it is not easy to be assured of the
nature of the quantities arising from the combination of so many complex
expressions. .

If we extend our views and consider the stability of the system of the world,
it is necessary to begin with establishing the convergency of the terms into
which R is expanded. The mathematical form of these terms will always be
the same; but unless their total amount can be estimated with sufficient ex-
actness by a limited number of them, the human understanding can come to
no solid decision. Now this will depend upon the effect of the perturbations
in changing the eccentricities and the inclinations of the orbits to the ecliptic.

MDCCCXXXIL. 26
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If it can be proved that these elements, after an indefinite lapse of time, will
remain of inconsiderable magnitude as they are at present, the convergency of
the series will be established, and the form of the terms of which R consists,
will enable us to compute the changes in all the elliptic elements, and to de-
cide the great question of the stability of the system. Butwe cannot enter
upon any extended discussion of these points, and shall conclude this paper
with some remarks in illustration of the problem we have solved, and of the
manner in which we have solved it.

6. If we suppose that there is no disturbing force, or that R = 0, we shall
have by the equation (1),

1 2 da® + dy? + d2?

a  r de*. 3

and if 'V represent the velomty of the planet at the extremity of , then,
da® + dy? + dz?
de.
This last equation shows that the mean distance a of an elliptic orbit depends
only upon the radius vector drawn to any point, and upon the velocity at that
point. Conceive that the straight line r extends from the sun in a given
direction and to a given length, and from its extremity suppose that a planet
is launched into space with the velocity V, the foregoing equation will deter-
mine the mean distance ¢ of the immoveable ellipse in which the planet will
revolve. The point from which the planet is projected, and consequently r,

Vi ,and -+ =~ — V2,

.. 1 . .
remaining the same, — and V2 will vary together; and if we suppose that «
becomes equal to a, at the same time that V2 is changed into V2--d. V2 by
forces which act continually but insensibly, we shall have these equations,

d.e=—d.V, and v=——fd.V2

a

It has been shown that the disturbing forces acting in the directions of «, v, %,

dR dR dR
and tending to increase these lines, are respectively —— dy i and, by the

principles of dynamics, double the sum of the products of these forces, each
being multiplied by the element of its direction, is equal to the change effected
on the square of the Velocity : wherefore,

dxdx+ dy+dzdz)=‘>d’R=d.V2;
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and consequently,
d.+=—2dR, andy=-—2/dR

These results agree with the investigation in the fourth section of this paper;
and they coincide with the remarkable equation first discovered by Lacrance,
from which he inferred the invariability of the mean distances and the periodic
times of the planets, when the approximation is extended to the first power
only of the disturbing force.

It has already been observed that == is the disturbing force per-

dR Vi +s§.
dar’ 7

pendicular to the plane passing through the sun and the coordinate =, that is,

. . . . dR 1
to the planet’s circle of latitude ; and likewise that —— - + & is the disturb-

ing force in the same plane perpendicular to r the radius vector. The elements

rds
Tt wherefore,

; . . . da
of the direction of these forces are respectively ;ﬁ? and

(dA a2+ 55 ds)

is the variation produced in the square of the velocity in the direction perpen-
dicular to ». But dv being the small angle described round the sun in the
time d¢, the space described by the planet perpendicular to r, is r dv; and

consequently is the planet’s velocity in that direction. Wherefore,

rdv

dty/w
using the symbol o to denote a variation caused by the disturbing forces per-
pendicular to the radius vector, and observing that these forces produce no

momentary increase or decrease of that line, we get,

(lR r*dv® dv®
— 2 — o
dl—l—d d) 0. Fa=" B.dtgﬁpl.
consequently,
dR dR r*d v
2 (42 @« —y rev,
2r2 g dh+ 5o ds) =13 dtg _B‘dza.

rdv
and, as iV and its square vary by no other cause but the action of the

forces perpendlcular to r, we have
r*dv?

X+ Tds)=d. T

Now this is the same differential equation that has already been obtained by
' 262
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a different method in equation (3) of the second section, and from which the
value of A%, the semi-parameter of the variable elliptic orbit, was deduced.
That element is therefore as much an immediate deduction from the disturbing
forces, as is the mean distance in the equation of LaGRANGE. As the variation
of a is the effect of the disturbing force in altering the velocity in the orbit, so
the variation of /2 is the effect of that part of the disturbing force which alters
the exact proportionality to the times of the areas described round the sun.
The two elements are together sufficient for determining both the form and
the magnitude of the momentary elliptic orbit. The placing of this ellipse so
as to be in intimate contact with the real path of the planet, a procedure
which corresponds to finding the relation between the arcs ¢ and v, determines
the motion of the line of the apsides.

If, lastly, we attend to that part of the disturbing force which is perpen-
dicular to the circle of latitude passing through the planet, and proceed as
before, we shall obtain the differential of the equation (4) in the second section.
This differential is therefore the effect of the disturbing force in altering the
momentary area which is described in the immoveable plane of xy, and which,
without the action of this force would be proportional to the time. The elemen-
tary area in the immoveable plane is the projection of the area described in the
same time in the plane of the orbit ; the proportion of the two determines the
cosine of the inclination of the variable plane in which the planet moves; and
from this it is easy to determine the position of the line of the nodes, as has
been fully explained.

What has been said is independent of the nature of the forces in action; and
it is obvious that the same method may be applied to estimate the effect of any
extraneous force in disturbing the elliptic motion of a planet.

It would appear that in the view we have taken of this problem, we have
been making an approach to some general hints contained in the corollaries of
the seventeenth proposition of the first book of the Principia. A connexion
between the most recondite results of modern analytical science, and the
original ideas thrown out by an author who, although he accomplished so
much, has unavoidably left much to be supplied by his successors, is un-
doubtedly worthy of being remarked, and may suggest useful reflections.

- December 22, 1831.



